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Abstract

We consider a Schrödinger-type differential expression HV = ∇
∗
∇ + V , where ∇ is a Hermitian connection on a Hermitian

vector bundle E over a complete Riemannian manifold (M, g) with metric g and positive smooth measure dµ, and V is a locally
integrable section of the bundle of endomorphisms of E . We give a sufficient condition for m-accretivity of a realization of HV in
L2(E).
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1. Introduction and the main result

1.1. The setting

Let (M, g) be a C∞ Riemannian manifold without boundary, with metric g and dim M = n. We will assume that
M is connected and complete. Moreover, we will assume that we are given a positive smooth measure dµ, i.e. in any
local coordinates x1, x2, . . . , xn there exists a strictly positive C∞ density ρ(x) such that dµ = ρ(x)dx1dx2 . . . dxn .

Let E be a Hermitian vector bundle over M . We denote by L2(E) the Hilbert space of square integrable sections
of E with respect to the scalar product

(u, v) =

∫
M

〈u(x), v(x)〉 dµ(x). (1)

Here 〈·, ·〉 denotes the fiberwise inner product in Ex .
In what follows, by C∞(E) we denote the space of smooth sections of E and by C∞

c (E) the space of smooth
compactly supported sections of E . For E = M × C, we will use the notation L2(M), C∞(M) and C∞

c (M).
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Let

∇: C∞(E) → C∞(T ∗M ⊗ E)

be a Hermitian connection on E . We consider a Schrödinger-type differential expression HV = ∇
∗
∇ + V , where

∇
∗: C∞(T ∗M ⊗ E) → C∞(E)

is a differential operator which is formally adjoint to ∇ with respect to the scalar product (1), and V is a linear bundle
endomorphism of E , i.e. for every x ∈ M ,

V (x): Ex → Ex (2)

is a linear operator.
In this paper, we define a realization of the expression HV as an operator in L2(E) and show that this realization is

m-accretive.
We make the following assumption on V .

Assumption A1. Assume that V ∈ L p
loc(End E), where

(1) p =
2n

n+2 for n ≥ 3,
(2) p > 1 for n = 2,
(3) p = 1 for n = 1.

In the sequel, we will use the following notation:

V1(x) :=
V (x) + (V (x))∗

2
, V2(x) :=

V (x) − (V (x))∗

2i
, x ∈ M, (3)

where i =
√

−1 and (V (x))∗ denotes the adjoint of the linear operator (2) (in the sense of linear algebra).
By (3), for all x ∈ M , we have the following decomposition:

V (x) = V1(x) + iV2(x).

1.2. Sobolev space W 1,2(E)

By W 1,2(E) we will denote the completion of the space C∞
c (E) with respect to the norm ‖ · ‖1 defined by the

scalar product

(u, v)1 := (u, v) + (∇u, ∇v) u, v ∈ C∞
c (E). (4)

Remark 1. Since (M, g) is complete, by [5, Proposition 1.4] it follows that

W 1,2(E) = {u ∈ L2(E) : ∇u ∈ L2(T ∗M ⊗ E)}.

1.3. A realization of HV in L2(E)

Let V be as in Assumption A1. We define an operator S in L2(E) by Su = HV u with the domain

Dom(S) = {u ∈ W 1,2(E) : HV u ∈ L2(E)}. (5)

(In Remark 4 it is shown that for all u ∈ W 1,2(E) we have V u ∈ L1
loc(E), so that HV u in (5) can be understood in the

distributional sense.)
We now state the main result.
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Theorem 2. Assume that (M, g) is a Riemannian manifold with positive smooth measure dµ. Assume that (M, g) is
complete. Let E be a Hermitian vector bundle over M and let ∇ be a Hermitian connection on E. Assume that V
satisfies Assumption A1. Additionally, assume that for all x ∈ M,

V1(x) ≥ 0, as an operator Ex → Ex ,

where V1(x) is as in (3). Then S is an m-accretive operator.

Remark 3. Kato [8, Theorem I] proved m-accretivity of the operator −∆ + V in L2(Ω), where Ω ⊂ Rn is an
open set, −∆ is the standard Laplacian on Rn with the standard metric and measure and V ∈ L p

loc(Ω), with p as
in Assumption A1, is a complex-valued function such that Re V ≥ 0. Kato’s result was extended in [10] to operator
HV = ∇

∗
∇ + V , where (M, g) is a manifold of bounded geometry, E is a Hermitian vector bundle of bounded

geometry over M , ∇ is a C∞-bounded Hermitian connection on E , and V as in Assumption A1. The method of
[10] uses the Kato inequality technique alone, and it works well in a bounded geometry setting. In this paper we
eliminate the bounded geometry assumptions by using the Kato inequality technique together with the domination of
semigroups technique and positivity preserving property of the resolvent of the scalar Laplacian.

Remark 4. Let u ∈ W 1,2(E). We will show that V u ∈ L1
loc(E). For n ≥ 3, by the first part of [1, Theorem 2.21], we

have the continuous embedding

W 1,2
loc (E) ⊂ L p′

loc(E), (6)

where 1/p′
= 1/2 − 1/n.

Let p =
2n

n+2 be as in Assumption A1. Since 1/p + 1/p′
= 1, by Hölder’s inequality it follows that V u ∈ L1

loc(E).
For n = 2, by the first part of [1, Theorem 2.21], we get continuous embedding (6) for all 2 < p′ < ∞. By

Assumption A1, for n = 2, we have p > 1. We may assume that 1 < p < 2 (if V ∈ L t
loc(End E) with t ≥ 2, then

V ∈ L p
loc(End E) for all 1 < p < 2). Given 1 < p < 2, we can take p′ > 2 such that 1/p + 1/p′

= 1. By Hölder’s
inequality we have V u ∈ L1

loc(E).
For n = 1, it is well known (see, for example, the second part of [1, Theorem 2.21]) that (6) holds with p′

= ∞.
By Assumption A1 for n = 1, we have p = 1. Thus by Hölder’s inequality we have V u ∈ L1

loc(E).

2. Proof of Theorem 2

Throughout this section, we assume that all hypotheses of Theorem 2 are satisfied.
In the sequel, by W −1,2(E) we will denote the dual of W 1,2(E). For the duality pairing between W −1,2(E) and

W 1,2(E), will use the notation

( f, u)−1, f ∈ W −1,2(E), u ∈ W 1,2(E). (7)

We begin by introducing another realization of HV .

2.1. Maximal realization of HV between W 1,2(E) and W −1,2(E)

We define an operator T : W 1,2(E) → W −1,2(E) by T u = HV u with domain

Dom(T ) = {u ∈ W 1,2(E) : HV u ∈ W −1,2(E)}. (8)

Remark 5. The condition HV u ∈ W −1,2(E) for u ∈ W 1,2(E) makes sense since HV u is a distributional section of
E by Remark 4. Since ∇

∗
∇u ∈ W −1,2(E) for u ∈ W 1,2(E), it follows that the condition HV u ∈ W −1,2(E) in (8) is

equivalent to V u ∈ W −1,2(E) for u ∈ W 1,2(E).

Lemma 6. The following inclusion holds: C∞
c (E) ⊂ Dom(T ).

Proof. Let u ∈ C∞
c (E). Then V u ∈ L p

comp(E), where p is as in Assumption A1. By Remark 4, it follows that

W 1,2
loc (E) ⊂ L p′

loc(E), where 1/p + 1/p′
= 1. By duality, we have L p

loc(E) ⊂ W −1,2
loc (E). Thus V u ∈ W −1,2

comp(E) ⊂

W −1,2(E), and hence u ∈ Dom(T ). �
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2.2. Minimal realization of HV between W 1,2(E) and W −1,2(E)

By T0 we will denote the restriction of T with Dom(T0) = C∞
c (E). Clearly, T0 is a densely defined operator.

Remark 7. Since Dom(S), where S is as in (5), does not necessarily contain C∞
c (E), there is no minimal realization

of HV in L2(E) (in the sense of Section 2.2).

2.3. Maximal and minimal realization of HV ∗

Let V ∗ be the adjoint of V as in (3). In what follows, we will denote by T ′ and T ′

0 the maximal and minimal
realizations of HV ∗ in the sense of Section 2.1 and Section 2.2 respectively.

The proof of the following lemma is given in [10, Lemma 2.4]. As we shall refer to its proof later, we included it
in Section 4.

Lemma 8. The following property holds: T = (T ′

0)
∗, where ∗ denotes the adjoint of an operator.

In what follows, we will adopt the terminology of Kato [8] and distinguish between monotone and accretive
operators. Accretive operators act within the same Hilbert space, while monotone operators act from a Hilbert space
into its adjoint space (anti-dual).

The proofs of the following two lemmas are direct consequences of the definition of T0; for details see [10, Lemmas
2.5 and 2.6].

Lemma 9. The operator T0 is monotone, i.e.

Re(T0s, s)−1 ≥ 0, for all s ∈ C∞
c (E), (9)

where (·, ·)−1 is as in (7).

Lemma 10. The operator 1 + T0 is coercive in the sense that

‖(1 + T0)s‖−1 ≥ ‖s‖1, for all s ∈ Dom(T0) = C∞
c (E), (10)

where ‖ · ‖−1 is the norm in W −1,2(E), and ‖ · ‖1 is the norm in W 1,2(E).

Lemma 11. The following hold:

(1) The operator T0 is closable with closure T ∗∗

0 .

(2) Ran(1 + T ∗∗

0 ) is closed.

Proof. Let T ′ be as in Section 2.3. Since T ′

0 ⊂ T ′ (as operators), it follows that T ′ is densely defined. By Lemma 8
we know that T ′

= T ∗

0 . Thus T ∗∗

0 exists and equals T0. This proves property (1).
The proof of property (2) uses coerciveness of 1+ T0 (and hence of 1+ T ∗∗

0 ) and the definition of the closed range;
for details see [10, Lemma 2.7]. �

2.4. Scalar Laplacian on M

Let d: C∞(M) → Ω1(M) be the standard differential, and let d∗: Ω1(M) → C∞(M) be the formal adjoint of d
with respect to the inner product (1) with E = M × C. The operator

∆M := d∗d: C∞(M) → C∞(M)

is called the scalar Laplacian.
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2.5. Kato’s inequality

We will use the following variant of Kato’s inequality for the Bochner Laplacian (for the proof, see [2, Theorem
5.7]).

Lemma 12. Assume that (M, g) is a Riemannian manifold. Assume that E is a Hermitian vector bundle over M and
∇ is a Hermitian connection on E. Assume that w ∈ L1

loc(E) and ∇
∗
∇w ∈ L1

loc(E). Then

∆M |w| ≤ Re〈∇∗
∇w, sign w〉, (11)

where

sign w(x) =


w(x)

|w(x)|
if w(x) 6= 0,

0 otherwise.

Remark 13. The original version of Kato’s inequality was proven in Kato [7].

We will also need some facts on domination of semigroups.

2.6. Domination of semigroups

With (M, g), E and ∇ as in hypotheses of Theorem 2, it is well known that ∇
∗
∇ and ∆M are essentially self-

adjoint on C∞
c (E) and C∞

c (M) respectively; see, for example, [5, Theorem 3.5]. Let S0 and K0 denote the self-adjoint
closures of ∇

∗
∇|C∞

c (E) and ∆M |C∞
c (M). Since S0 and K0 are non-negative self-adjoint operators, it follows that −S0

and −K0 generate self-adjoint contraction semigroups {e−t S0}t≥0 in L2(E) and {e−t K0}t≥0 in L2(M) respectively;
see, for example, [3, Theorem 4.6]. Combining Kato’s inequality (11) and [6, Theorem 2.15], it follows that the
semigroup e−t S0 is dominated by e−t K0 :∣∣∣e−t S0 f

∣∣∣ ≤ e−t K0 | f |, for all f ∈ L2(E), (12)

where | · | denotes the fiberwise norm in Ex .

2.7. Quadratic form associated with K0 and S0

It is well known that the quadratic forms associated (in the sense of [9, Theorem VI.2.1]) with the self-adjoint
closures K0 of ∆M |C∞

c (M) in L2(M) and S0 of ∇
∗
∇|C∞

c (E) in L2(E) are

t0(v) :=

∫
M

|dv|
2 dµ and h0(w) :=

∫
M

|∇w|
2 dµ,

with the domains D(t0) = W 1,2(M) and D(h0) = W 1,2(E).
In what follows,

(·, ·)t0 := t0(·, ·) + (·, ·)L2(M) (13)

denotes the inner product corresponding to the quadratic form t0.
The following lemma is a special case of [11, Proposition 2.4].

Lemma 14. Assume that (M, g) is a complete Riemannian manifold. Let t0 be the quadratic form associated with the
self-adjoint closure K0 of ∆M |C∞

c (M). Assume that 0 ≤ f ∈ D(t0). Then there exists a sequence 0 ≤ φk ∈ C∞
c (M)

such that

‖φk − f ‖t0 → 0, as k → ∞,

where ‖ · ‖t0 is the norm corresponding to the inner product (13).
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The following proposition is of key importance.

Proposition 15. Ran(1 + T ∗∗

0 ) = W −1,2(E).

Proof. By Lemma 11 it suffices to show that if u ∈ W 1,2(E) and

((1 + T0)s, u)−1 = 0, for all s ∈ C∞
c (E), (14)

then u = 0.
Using (14), integration by parts (see [2, Lemma 8.8]) and complex conjugation, we obtain

0 = (s, u)−1 + (∇∗
∇s, u)−1 + (V s, u)−1

= (u, s)−1 + (∇∗∇u, s)−1 + (V s, u)−1, for all s ∈ C∞
c (E), (15)

where (·, ·)−1 is as in (7) and z̄ is the complex conjugate of z ∈ C.
By repeating the same arguments as in the proof of the first two equalities in (27) (with V ∗ replaced by V ), we get

(V s, u)−1 =

∫
〈(V s)(x), u(x)〉 dµ(x) =

∫
〈(V ∗u)(x), s(x)〉 dµ(x). (16)

Using (15) and (16) we get for all s ∈ C∞
c (E),

0 = (u, s)−1 + (∇∗∇u, s)−1 +

∫
〈(V ∗u)(x), s(x)〉 dµ(x). (17)

Therefore, the following distributional equality holds:

∇
∗
∇u + V ∗u + u = 0. (18)

From (18), we have ∇
∗
∇u = −V ∗u − u ∈ L1

loc(E). Therefore, by Lemma 12, we get

∆M |u| ≤ Re〈∇∗
∇u, sign u〉 = Re〈−u − V1u + iV2u, sign u〉 (19)

= −|u| − 〈V1u, sign u〉 ≤ −|u|, (20)

where V1 ≥ 0 and V2 are linear self-adjoint bundle endomorphisms as in (3).
By (19) we get the following distributional inequality:

(∆M + 1)|u| ≤ 0. (21)

Let t0 and h0 be as in Section 2.7. Since u ∈ W 1,2(E) = D(h0) and since the domination relation (12) holds, by
abstract Proposition 2.12 in [6] it follows that |u| ∈ D(t0).

Using integration by parts, by (21) we have

(φ, |u|)t0 ≤ 0, for all 0 ≤ φ ∈ C∞
c (M), (22)

where (·, ·)t0 is as in (13).
Let f := (K0 + 1)−1

|u|, where K0 is as in Section 2.6. Then f ∈ Dom(K0), and

(|u|, |u|)L2(M) = ((K0 + 1) f, |u|)L2(M) = ( f, |u|)t0 . (23)

(The last equality in (23) holds since t0 is the quadratic form associated with K0; see [9, Theorem VI.2.1].)
It is well known that (K0 + 1)−1 is positivity preserving in L2(M); see, for instance, [4, Sec. 5.1]. Since

0 ≤ |u| ∈ L2(M), it follows that 0 ≤ f ∈ Dom(K0) ⊂ D(t0). Hence, by Lemma 14 there exists a sequence
0 ≤ φk ∈ C∞

c (M) such that ‖φk‖t0 → ‖ f ‖t0 , where ‖ · ‖t0 denotes the norm corresponding to the inner product
(·, ·)t0 .

Thus, by (23) and (22) we have

(|u|, |u|)L2(M) = ( f, |u|)t0 = lim
k→∞

(φk, |u|)t0 ≤ 0.

Hence u = 0, and the proposition is proven. �
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Corollary 16. T ∗∗

0 is a maximal monotone operator (in the sense that it is monotone and has no proper monotone
extension).

Proof. By Lemma 11 we know that T ∗∗

0 = T0. Hence, from (9) we get

Re(T ∗∗

0 u, u)−1 ≥ 0, for all u ∈ Dom(T ∗∗

0 ).

Thus, T ∗∗

0 is a monotone operator. By Proposition 15 and the remark after the equation (3.38) in [9, Sec. V.3.10] it
follows that T ∗∗

0 has no proper monotone extension. �

Proposition 17. The following hold:

(1) T = T ∗∗

0 .
(2) The operator T is maximal monotone.

Proof. We first prove property (1). Since T0 ⊂ T (as operators), it follows that T ∗∗

0 ⊂ T because T is closed
by Lemma 8. By Proposition 15, Ran(1 + T ∗∗

0 ) = W −1,2(E). By the same proposition (with V replaced by V ∗) it
follows that Ran(1 + (T ′

0)
∗∗) = W −1,2(E), where T ′

0 is as in Section 2.3. Since 1 + T = 1 + (T ′

0)
∗ (see Lemma 8), it

follows that Ker(1 + T ) = {0}. Hence T cannot be a proper extension of T ∗∗

0 . This shows that T ∗∗

0 = T .
Property (2) follows immediately from property (1) and Corollary 16. �

3. Proof of Theorem 2

First note that the following holds: u ∈ Dom(S) if and only if u ∈ Dom(T ) and T u ∈ L2(E) (in which case
Su = T u).

By Propositions 15 and 17, it follows that Ran(1 + T ) = W −1,2(E). Therefore Ran(1 + S) = L2(E).
We will now show that S is accretive. Since T is (maximal) monotone by Proposition 17, it follows that

Re(Su, u) = Re(T u, u)−1 ≥ 0, for all u ∈ Dom(S), (24)

where (·, ·) is as in (1) and (·, ·)−1 is as in (7).
The inequality (24) shows that S is accretive; see the definition in the equation (3.37) of Sec. V.3.10 in [9].
We will now show that S is a closed operator. Let uk ∈ Dom(S) be a sequence such that uk → u in L2(E)

and Suk → v in L2(E). We need to show that u ∈ Dom(S) and v = Su. Since uk ∈ Dom(S), by (5) it follows
that uk ∈ W 1,2(E) and HV uk ∈ L2(E). By (8) we have uk ∈ Dom(T ), and from the definitions of T and S and
the assumption Suk → v in L2(E) we get T uk = Suk → v in W −1,2(E). Since T = T ∗∗

0 , from (10) (which
also holds for T ∗∗

0 = T0) it follows that uk is a Cauchy sequence with respect to the norm of W 1,2(E); hence, uk

converges in the norm of W 1,2(E) to some element z ∈ W 1,2(E). In particular, we get uk → z in L2(E). Since
(by assumption) uk → u in L2(E), it follows that u = z ∈ W 1,2(E). Since T is a closed operator and since
uk → u in W 1,2(E) and T uk → v in W −1,2(E), it follows that u ∈ Dom(T ) and v = T u. Thus, u ∈ W 1,2(E) and
v = T u = HV u ∈ W −1,2(E). But, by assumption, we know that v ∈ L2(E); hence, HV u = v ∈ L2(E). Now by
definition of S it follows that u ∈ Dom(S) and v = Su; hence, S is a closed operator.

Thus we have proved that S is accretive, closed, and Ran(1 + S) = L2(E). By the remark after the equation (3.37)
in [9, Sec. V.3.10], it follows that S is m-accretive. �

4. Proof of Lemma 8

We need to show that for any u ∈ W 1,2(E) and f ∈ W −1,2(E), the equation T u = f is true if and only if

(T ′s, u)−1 = ( f, s)−1, for all s ∈ C∞
c (E), (25)

where (·, ·)−1 is as in (7), and z denotes the complex conjugate of z ∈ C.
1. Assume that u ∈ W 1,2(E), f ∈ W −1,2(E), and T u = f . Then V u ∈ W −1,2(E). By Lemma 6, for all

s ∈ C∞
c (E), we have V ∗s ∈ W −1,2

comp(E). Since s ∈ C∞
c (E), we have V ∗s ∈ L p

comp(E) with p as in Assumption A1.

By the proof in Remark 4, we have u ∈ W 1,2(E) ⊂ L p′

loc(E) (continuous embedding), where 1/p + 1/p′
= 1.
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By Hölder’s inequality, L p′

loc(E) is in a continuous duality with L p
comp(E) by the usual integration. Thus, for all

s ∈ C∞
c (E), we have (after approximating u by sections u j ∈ C∞

c (E) in W 1,2-norm in a neighborhood of supp s)

(V ∗s, u)−1 = lim
j→∞

(V ∗s, u j )−1 = lim
j→∞

∫
〈(V ∗s)(x), u j (x)〉 dµ(x)

=

∫
〈(V ∗s)(x), u(x)〉 dµ(x). (26)

The second equality in (26) holds since V ∗s ∈ L1
loc(E) by Remark 4 and u j ∈ C∞

c (E).
Therefore, we obtain

(V ∗s, u)−1 =

∫
〈(V ∗s)(x), u(x)〉 dµ(x) =

∫
〈(V u)(x), s(x)〉 dµ(x)

= (V u, s)−1. (27)

The first equality in (27) follows from (26). The second equality in (27) holds by the definition of (V (x))∗: Ex → Ex .
The third equality in (27) holds for all s ∈ C∞

c (E) since V u ∈ W −1,2(E) and V u ∈ L1
loc(E) by Remark 4.

Using (27), we obtain

(T ′s, u)−1 = (∇∗
∇s + V ∗s, u)−1 = (∇∗

∇s, u)−1 + (V ∗s, u)−1

= (∇∗∇u, s)−1 + (V u, s)−1 = (T u, s)−1, (28)

where V ∗ is the adjoint of V as in (3). In the third equality in (28) we also used integration by parts; see, for
example, [2, Lemma 8.8].

2. Assume that u ∈ W 1,2(E), f ∈ W −1,2(E), and (25) holds. Then the first two equalities in (27) hold (we do not
know a priori that V u ∈ W −1,2(E) so the third equality in (27) is not yet justified). Thus for all s ∈ C∞

c (E),

( f, s)−1 = (T ′s, u)−1

= (∇∗
∇s, u)−1 + (V ∗s, u)−1 = (∇∗∇u, s)−1 +

∫
〈(V ∗s)(x), u(x)〉 dµ(x),

where the second equality follows as in (28), and the third equality follows from integration by parts and the first
equality in (27).

Since ∇
∗
∇u ∈ W −1,2(E) and f ∈ W −1,2(E), we obtain

( f − ∇∗∇u, s)−1 =

∫
〈(V ∗s)(x), u(x)〉 dµ(x), for all s ∈ C∞

c (E). (29)

Since u ∈ W 1,2(E), from Remark 4 we know that V u ∈ L1
loc(E). By (29) we get V u ∈ W −1,2(E) since C∞

c (E)

is dense in W 1,2(E). Thus, as in (27),∫
〈(V ∗s)(x), u(x)〉 dµ(x) = (V u, s)−1, for all s ∈ C∞

c (E). (30)

From (29) and (30), we obtain

( f − ∇
∗
∇u, s)−1 = (V u, s)−1, for all s ∈ C∞

c (E). (31)

Therefore,

( f, s)−1 = (∇∗
∇u, s)−1 + (V u, s)−1 = (T u, s)−1, for all s ∈ C∞

c (E).

This shows that T u = f , and the lemma is proven. �
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